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Quantum distribution functions for radial observables
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Abstract. For quantum systems with two-dimensional configuration space we construct a
physical radial momentum observable. Rescaling the radius we find that the dilation degrees
of freedom form a Weyl algebra. With this we construct a radial Wigner quasiprobability
distribution function.

1. Introduction

The Wigner quasiprobability distribution function is a familiar tool to many working in
guantum and atom optics [1]. It is primarily used in the classical-quantum correspondence
where the appearance of positive and negative regions of the Wigner function gives easily
understood information concerning the probability concentrations and quantum interferences
present within the quantum state [2]. Typically, one describes the Wigner function on a
phase space which is labelled by the Cartesian coordinates of position and momentum. For
physical systems which admit a two-dimensional cylindrical symmetry, for example, trapped
ultracold ions, Bose condensates, etc, clearly a polar description of the Wigner function
would be more natural. However, no such description has appeared in the literature. In
this paper we show, in three stages, how a Wigner function for the radial observables can
be constructed. This radial Wigner function could be reconstructed from experimental data
much as recent experiments have reconstructed the Cartesian Wigner function for the one-
dimensional motion of a trapped ion [3]. The angular parts of the complete four-dimensional
Wigner function are complicated by the imposition of single-valuedness of the wavefunction
under a rotation of 2 which cause the conjugate angular momentum to become discrete.
We leave the angular part for a later work.

The stages towards the construction of a radial Wigner function proceed as follows.
(1) A proper Wigner function possesses marginals which are true probability distributions
for the observables whose eigenvalues parametrize the Wigner function and thus the phase
space axes. For a single degree of freedom a mere transformation of the Cartesian position
and momentum parameters into polar form does not yield a proper Wigner function for
the polar parameters [4]. This is also true for higher-dimensional phase spaces. Central
to the problem is a correct specification of the radial momentum operator. By noting the
symmetry action of the momentum on the half-infinite radius operator we can construct a
physical ‘conjugate’ momentur#”. This momentum is physical in that it is represented
by a fully self-adjoint operator. The conjugate momentum found here is similar to those
found in the method of geometric quantization [5].
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(2) Essential to the construction of the Wigner function is the existence of ‘point’
operatorsA (i1, A2), which obey, Tri (A1, 22) AT(A}, 15)] = (A1 — )8 (ha — 1)) [6, 14].
We find that the radiald(r, P"), is not completely exponential in the radial position and
momentum operators.

(3) Guided by the form ofd(r, P") we make the operator transformatién= In 7.
This is a well-defined transformation &sis a positive unbounded operator with a real
non-negative spectrum. We then find, P’] = i%, the standard Heisenberg-Weyl algebra.
Given this algebra and after rescaling the eigenbasis kets tof recover the standard
resolution of unity, we can now construct a radial Wigner functiévi(v, P"). This
radial (or dilation) Wigner function gives the proper marginal probability distributions for
 and P". Essentially, we have performed a unitary transformation whose corresponding
classical counterpart is a canonical transformation from the polar coordiraigsto the
new coordinateginr, 7/r), where the domains of the latter are fully infinite. From the
Heisenberg—Weyl algebra for frand Pr, one can deduce the existence of a dilation ground
state|O)gilations WWe then calculate the wavefunction of this ground state invthasis. We
finally calculate the radial Wigner function for the lowest Schwinger stdi€s (these are
simultaneous eigenstates of energy and angular momentum), and briefly outline how, given
a quantum state in a two-dimensional harmonic Fock representation, one can construct the
radial reduced density matrix, and from there the radial Wigner function.

2. Radial momentum

Dirac, in his textbook on quantum mechanics [7], introduced the following momentum,
conjugate to the radial coordinate

A

PP =Z(kP, + 5P, —ih/2). (1)

| =

The factor of 2 difference in the term arises because we are working in two dimensions
instead of the three in Dirac’s case. Using the Cartesian commutation relations bétween
and P, one can easily confirm that

[7, PP] =ik )
Using the Campbell-Baker—Hausdorff (CBH) expansion and (2) we can show
explic PP /h)F exp(—ic PP /Ry = 7 + ¢. (3)

Since? has a half-infinite spectrum, the operatof cannot be self-adjoint. This has been
noted by many authors [8]. To discuss the adjoint properties of an operator we must be
more precise and include the domain of an operator as part of that operator’s definition. The
adjoint of an operatoA, is defined to bel, such thatd’y = n where(y, A¢g) = (1, ¢) for

any v and all¢ in the domain ofA [9]. If AT = A then A is said to be self-adjoint. Fot

to be self-adjoint it is crucial that the domains.éfand A" be equal. The Dirac momentum

(1), on the half-lineR* with measurex dx, is not self-adjoint. To show this explicitly we
must first obtain a representation BP in the? eigenket basis (i.eZ|r) = r|r)). From the
commutation relation (2) we must ha‘((e|13“|w) ~ —ih(d, + f(r)){r|¥). From (1), and
expressing the Cartesian partial derivatives in polar coordinates we find

. _ 1
(rIPP|y) = —iR <3r + 2—) (rlyr). 4
r
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Before discussing the adjointedness of this operator we must first examine wiétHsr
Hermitian. We know that all observables in quantum mechanics are Hermitian self-adjoint
operators. An operatot is said to be Hermitian if, for every andv in the domain of4,

(AY, @) = (¥, Ad). (5)
For the operator—iﬁ% defined to act on the whole real line, it is trivial to show (5) is
satisfied as long ag*¢|>*,_ = 0. This is true sincey, ¢ € L?(R,dx). For the case
at hand, however, it can easily be shown that if one allows the opef#toto act on
every normalizable wavefunction i62(R*, r dr), then it will not be Hermitian. One has
to restrict the domain of? by imposing a boundary condition at the origin. To see this
most readily we rescale the wavefunctions tovbe= V/\/r, and¢ = U/./r, where now
U,V e L%R*, dr), which gives lim_,., U(r) = 0 and similarly forV(r). Rewriting
equation (5) in these rescaled wavefunctionsfoe P?, yields the conditio*U|§° = 0.
This condition is satisfied at = oo , however, from normalizability alone there are no
conditions on the values of eithéf or V at the origin. Thus, to ensure that the operator
PP is Hermitian we must allow it to act only on a restricted class of all possible normalizable
wavefunctions, i.e. to that clags(r) = U(r)//r whereU(r) =0, atr = 0.

We now address the adjoint properties of the operator. An operatmay either be
essentially self-adjoint, as is the operavécr = —iﬁ% on R, or may be self-adjoint on a
restricted subclass of wavefunctions, as is the opeitam the intervalx € [0, a], for the
class of wavefunctiong (x = 0) = €’y (x = a), or may possesso self-adjoint extensions.

A method to determine whether an Hermitian operatois either essentially self-adjoint,

or possesses a self-adjoint extension, has been developed by von Neumann [20, 15, 21].
This method involves the determination of theficiency indicest, of the operato. If

bothn, = 0, then the operator is essentially self-adjoint, while:if = n_, the operator
possesses a self-adjoint extension. Howevet,, it~ n_, then no self-adjoint extension is
possible and the operator, if Hermitian, cannot possibly represent any physical observable.
The deficiency indices.., are the dimensions of the normalizable solution spaces of the
equationsAiy = +iy. For A = PP, we obtain

—(d 1 .
—lh (— + —) Y (r) = diy(r) (6)
dr 2
which, in the rescaled wavefunctioh = U/./r, becomes
—id—U = +iU @)
dr

and its solutions ard/(r) = Ups exp(¥r). Each solution is parametrized by a single
variable, however, the solution expr) is not in £L2(R*, dr), and thus we obtain the
deficiency indicegn,,n_) = (1, 0). Since these are not equab self-adjoint extension of
the Dirac radial momentum exists.

Thus informed, we must abandon the use of the Dirac momentum and we will look
instead for an operator whicWill be self-adjoint without the need for an extensiofio
do this we must find an operator which respects the half-infinite spectruh{2g]. This
can be achieved if we havé,[P"] = ifi#, the Sack dilation algebra [10]. Using the CBH
expansion we can easily show

explic P, /R)F exp(—ic P, /) = Fes. (8)
To explicitly construct aP” we form

. . ih

P =rPP — — 9)

2
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where the additionat/2 is needed for the Hermitian properties of the operdttras we
will see below.

To check that this operator is self-adjoint we first obtain the representatién f the
|r) basis to find

(rIP"|Yr) = —ih(rd, + D(r|y). (10)
As above, we must now find the subclass of all normalizable wavefunctions for wtiich
is an Hermitian operator. Examining the conditiol" v, ¢) = (¥, P"¢), in the re-scaled
wavefunctionslU = ¢/r, andV = ¢/r, we find that the wavefunctions (r), and V (R),
must satisfy,V*U|5° = 0. FromU,V € L3[R, dr/r), we see that/, V = 0 atr = oco.
Thus the operatoP”, when restricted to

(W) e L2RY, rdr), v =U/r,U(r =0) =0}

is Hermitian. To see whether this operator is also self-adjoint on this class of wavefunctions
we must obtain its deficiency indices, i.e. determine the dimensions of the normalizable
solution spaces of the equatiofy = +ivy. This again, is most readily achieved by going

to the rescaled wavefunctioWw, = ¢/r, where we now have

—mri\/(r) =+V@). (11)
dr

This equation has the two solutioligr) = Vor TV, neither of which are iC?(R*, dr/r).

Thus for this operator, the deficiency indices afe,,n_) = (0,0), and the operator
Pr, acting on this subclass of wavefunctionseissentially self-adjointThe situation here
is almost identical to the usual momentum operatei; &, acting on wavefunctions in

L?(R, dx) [11]. Thus we have shown that Dirac’'s Radial momentup®, is not self-
adjoint and does not possess a self-adjoint extension while the new radial momé¥itum,
is an essentially self-adjoint Hermitian operator Sf(R™*, r dr).

We now continue to explore the properties of this new momentum operator.

From (10) we can calculate the transition functipnP”) where|P") is the eigen-ket
of the operator®” to be

. 1 PR
(r|P") N

This is normalized with the measuralr and gives

(12)

o0
/ rdr(r|P")(P"|r) = 8(P" — P").
0
The action off on P is not a simple scaling, instead
efigf/ﬁﬁreigf/ﬁ — ﬁr —|—§f
To form a displacement, or point, operator we might be tempted to exponentiate a linear
combination of the position and momentum operators in analogy with the harmonic

oscillator. However, this construction does not result in a unique adjoint action of the
displacement operator ohand P”. From [13] we see

D(a,m) = exp(%a[ﬁr + mf])

=exp<I

= exp[

13’> exp[?(l - e“)} (13)

T — 1)] exp(%ﬁ’) )

x|| I S8
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Thus the choice of ordering alters the actiorifz, m) on the operators and P’. This is
to be expected since the algebra is not symmetri¢ amd Pr. One must explicitly specify
the ordering in this displacement operator as is done in most treatments of displacement
operators for spin systems.
An essential property for a displacement operator is [6, 14],

T DO, DIV, )] ~ 8L — 1)8(k — w). (14)

No operator in the form of products of exponentialsfoaind P’ will satisfy (14). We
instead consider the operator [16],

DO, ) = explin P’ /2h)r™* explin P’/ 2) (15)

where € [0, +00). Taking the trace ovejr) with measure%, fromr =0tor = 400
gives

. 1
TI[D(, D'V, u)] = @200 — A (w — . (16)

One can showD'(x, w)#D(x, u) = fe . However, to evaluat®' (i, u) P"D(x, 1) one
must calculate® P’#~*. This is done by expressing’ in terms of P2 through (9), using
the simpler commutation relations fdt2, the rule [f(#), PP] = ihdf(#)/d7, and finally
transforming back ta®”. This givesDi(x, u)P"D(A, u) = P + A.

Thus, by using the new ‘displacement’ operator (15), one can (except for the exponential
prefactor in (16)), almost completely regain the properties of the harmonic oscillator
displacement operator. Although one could now proceed to construct a Wigner function with
this displacement operator, the replacement ofiex#p with 7#* in (15), and the exponential
prefactor in (16) point towards a clearer understanding of the situation.

Guided by these signals we now make the transformation to a new coordinate operator,

b =Inf. (17)

This is a well-defined operation as the unbounded self-adjoint opetgtossesses a real
non-negative spectrum. The transformation (17) has previously been used in WKB studies of
radial dynamics [17, 18], and is known there as the Langer transformation. Transformation
(17) has also appeared in the geometric quantization of motion on the hdlf-line

Using the definition ofP” in terms of P (9), we can show
in
”;
the standard Heisenberg—Weyl algebra. Thus we have regained the algebra of the original
Cartesian position and momentum observables. The transformatiorifrat®), to the new
coordinategd, P"), is unitary while the corresponding classical transformation is canonical.
Since the spectrum for both and pr ranges from(—oo, +00) the translation generating
Weyl algebra in (18) properly respects the spectrum of both operators with the result that
both & and P” are self-adjoint on the domain of normalizable wavefunctions and thus
represent physical observables.

Since we now have a Heisenberg—Weyl algebra, we can construct creation and
annihilation operators in the same manner as the harmonic oscillator,

[0, P']=[In?, Pl=[In?,7PP]=F[In?, PPl =¢— =ik (18)

(19)

T See [5], equation 4.5.56. Note that the dimensionful quantiti¢sdrop out when we take the logarithm.



4816 J Twamley

In particular, there exists a proper vacuum st@igiations Which is annihilated byi.

Before we can construct the point operators and the Wigner function we must first
address the non-trivial measurdr, and how this appears in the new bagis 2). The
resolution of unity in thgr) basis becomes, for cylindrical symmetry, in the eigenbasis of
v,

+0o o0
1= dx dy|x, y){x, y| :271/ rdr|r)(r| (20)
oo 0
+00
=27 € dv|v) (v]. (21)

With this resolution of unity we must have

+00
AWy =) =2n e dv|v) (v|v') (22)

—0Q

and thus(v[v') = Z8(v —v) = 28(€® — €*). As is usually done in the treatment of
radial quantum systems [17], one can shift the influence of the non-trivial measure into
the wavefunction through a redefinition of the states. This gives a simpler measure at the
expense of altering the form of any dynamical equations which these states might obey [17].
We can thus rescale the basis kets to be

9)* = €'l€e), (23)
where |€°), is an eigenket of with eigenvalue & The resolution of the identity in the
new |v)* basis is,

+00
1= 4n/ do|9)** (9] (24)

[e¢]

where the inner product betweén)® basis kets is now simply(v|v')* = §(v — v). This
rescaling will primarily appear in the calculation ofv|y) when we have(r|y). To be
certain that everything is identical to the familiar Heisenberg—Weyl algebra associated with
quantum mechanics on the fully infinite line (i.¢. € L?(R, dx)), we finally evaluate
*(5| P |y). Since|v)® = r|r) wherer = €’, we have

“@IPT W) = r(r|PT V) |, = r[—iR(rd, + D](r|¥)],—e
=r [—m(ra, + 1)%} (DY) e
= — hrd,* (Ol —e = —iRd;* (B]Y). (25)

We see that the momentum operaﬁ)’r, in the basigv)* is the familiar—ino;.

3. Radial dilation Wigner function

As in the standard case of quantum mechanics on the fully infinite line in Cartesian
coordinates we define the Wigner andrdered quasidistribution functions to be

2
W(E,s) = / i—“e“f*—“*faa, 5) (26)

whereC(«, s) is thes-ordered displacement operator

C(a,s) = TrpD(@)e’/] (27)
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and D(x) = explaa’ — a*a), wherea' and a , the dilation creation and annihilation
operators, are defined as above. ket 0, &€ = y +ié, the Wigner function becomes

1 : & g\e
W(y,d) = E/ dee e <V + §|P|V - §> . (28)

We now calculate the Wigner function for the quantum states: |/, 0)(l, 0|, where
|I, m) is the Schwinger angular momentum state given by

1 A n
1, m) = Al AT0=m)0. ) (29)
VT+m)IT —m)!
where A, = (a, —ia,)/v/2, A_ = (4, +ia,)/~/2 [19]. Either by solving the generating
differential equation (as is done in [19]) or by solving the harmonic oscillator radial equation
one finds(r, ¢|l, m) = R, ,,(r)®,(¢), where

2(l — |m|))!

Rin() = B m(ﬂr)z'm'e‘f‘z’z/ZLf'_%(ﬁzrz)(—lf—""' (30)
1 .
On(P) = \/—Zezmld’ (31)

L¢ is the associated Laguerre polynomial ghek 1/+/h. Integrating out the dependence,
settingz = 1 and using (23) we obtain

*(5]l,0) = V2 e ¥ /2L0(e?) (1) (32)
Inserting (32) into (28) we finally find
292;/ +oo )
Wiy, 8) = — dee 2% exp[—€?” cosh 2]L, (7))L, (27 ®). (33)

The radial Wigner function, (33), is numerically integrated for the first féud) states
and plotted in figures &(—(d). The presence of negative regions in these Wigner functions
is not surprising as the pure statgs0) are reminiscent of Fock states. Further, one can
construct the dilation coherent state$ = D(«)|0)giation- MoOre interesting, however, is the
dilation vacuum state(|0)giiation. From the definitioréi|0)giiation = 0, and~/2a = o + ipr
we can evaluate(s|a|0)giation = O to get®(9|0)giation = N exp(—v2/2), whereN? = /7.
Again using (23) we obtain

1 1 r—%lnr
(r|0)dilation = ﬁ eXp(—E Inrin r) = (34)

rm

which is normalized to unity,

+00
/ r dr|(r|0)dilation|* = 1. (35)
0

4. Conclusion

In this paper we examined the problem of constructing a Wigner function for the two-
dimensional radial subspace of a quantum system possessing two continuous degrees of
freedom (or a four-dimensional Wigner function). Since the radial subspace is labelled by
an operator with an half-infinite spectrum, previous attempts to define a physical conjugate
momentum have be suspect. By choosing a momentum operator which respected the
spectrum of the radial coordinate we found we could construct a physically meaningful
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Figure 1. (a)—-(d) Radial Wigner functions for the stat¢is0),/ =0, ..., 3.

radial conjugate momentum. With a logarithmic relabelling of the radial coordinate the new
coordinate and momentum satisfied the Heisenberg—Weyl algebra and we were thus able to
carry over all the techniques associated with this algebra to construct a Wigner function. We
identified a ground state for these observables which was destroyed by a dilation annihilation
operator. We finally examined the radial Wigner function for particular quantum states and
found the radial wavefunction for the dilation vacuum state.

To examine the radial Wigner function for more general quantum states is difficult. If
one has the density matrix in a— y Fock state basis, one must first transfopninto
the Schwinger basis of angular momentum Ketss > Cpy.im|l, m){I’, m’|. One can then
find (r, ¢|p|r’, ¢’). Finally one must trace ovep. However, even though we have traced
out overg one will still end up with a sum over. This is because, in contrast with the
Cartesian Fock state decomposition, the radial wavefunction is labelldgbtmyguantum
numberd andm while the angular part is only labelled lay. We also note that the Wigner
function here gives the correct marginals for the operafrand?. Once these marginals
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and their corresponding integration measures are obtained one can redcale One
cannot rescale the axis in figure 1 to find the Wigner functionfforand# without altering

the integration measure and thus, the functional form of the Wigner function. The reasoning
used to arrive at the self-adjoint conjugate momenfinmay be applicable to systems with
more complicated boundary conditions, ive.e L?([0, L,()], dx). This will be reported

in a later work. Finally, although an observable, the radial operaterin7, may not be

easy to measure directly. However, it should be possible, through standard reconstruction
techniques, to numerically approximate the radial Wigner function from experimental data.
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